Основы теории нейронных сетей


Выбор начальных значений весовых векторов


Всем весам сети перед началом обучения следует придать начальные значения. Общепринятой практикой при работе с нейронными сетями является присваивание весам небольших случайных значений. При обучении слоя Кохонена случайно выбранные весовые векторы следует нормализовать. Окончательные значения весовых векторов после обучения совпадают с нормализованными входными векторами. Поэтому нормализация перед началом обучения приближает весовые векторы к их окончательным значениям, сокращая, таким образом, продолжительность обучающего процесса.

Рандомизация весов слоя Кохонена может породить серьезные проблемы при обучении, так как в результате весовые векторы распределяются равномерно по поверхности гиперсферы. Из-за того, что входные векторы, как правило, распределены неравномерно и имеют тенденцию группироваться на относительно малой части поверхности гиперсферы, большинство весовых векторов будут так удалены от любого входного вектора, что они никогда не смогут дать наилучшее соответствие. Эти нейроны Кохонена будут всегда иметь нулевой выход и окажутся бесполезными. Более того, оставшихся весов, дающих наилучшие соответствия, может оказаться слишком мало, чтобы разделить входные векторы на классы, которые расположены близко друг к другу на поверхности гиперсферы.

Допустим, что имеется несколько множеств входных векторов, все эти множества сходные, но необходимо разделить их на различные классы. Сеть должна быть обучена активировать отдельный нейрон Кохонена для каждого класса. Если начальная плотность весовых векторов в окрестности обучающих векторов слишком мала, то, возможно, не удастся разделить сходные классы из-за того, что весовых векторов в интересующей нас окрестности не хватит, чтобы приписать по одному из них каждому классу входных векторов.

Наоборот, если несколько входных векторов получены незначительными изменениями из одного и того же образца и должны быть объединены в один класс, то они должны включать один и тот же нейрон Кохонена. Если же плотность весовых векторов очень высока вблизи группы слегка различных входных векторов, то каждый входной вектор может активировать отдельный нейрон Кохонена.




Это не является катастрофой, так как слой Гроссберга может отобразить различные нейроны Кохонена в один и тот же выход, но это расточительная трата нейронов Кохонена.

Наиболее желательное решение будет таким: распределить весовые векторы в соответствии с плотностью входных векторов, подлежащих разделению, и для этого поместить больше весовых векторов в окрестности большого числа входных векторов. Конечно, на практике это невыполнимо, но существует несколько методов приближенного достижения тех же целей.

Одно из решений, известное под названием метода выпуклой комбинации (convex combination method), состоит в том, что все веса приравниваются к одной и той же величине



где
— число входов и, следовательно, число компонент каждого весового вектора. Благодаря этому все весовые векторы совпадают и имеют единичную длину. Каждой же компоненте входа
придается значение



где
— число входов. В начале
очень мало, вследствие чего все входные векторы имеют длину, близкую к
, и почти совпадают с векторами весов. В процессе обучения сети
постепенно возрастает, приближаясь к единице. Это позволяет разделять входные векторы и окончательно приписывать им их истинные значения. Весовые векторы отслеживают один или небольшую группу входных векторов и в конце обучения дают требуемую картину выходов.


Содержание раздела