Больцмановское обучение
Этот стохастический метод непосредственно применим к обучению искусственных нейронных сетей:
- Определить переменную , представляющую искусственную температуру. Придатьбольшое начальное значение.
- Предъявить сети множество входов и вычислить выходы и целевую функцию.
- Дать случайное изменение весу и пересчитать выход сети и изменение целевой функции в соответствии со сделанным изменением веса.
- Если целевая функция уменьшилась (улучшилась), то сохранить изменение веса.
Если изменение веса приводит к увеличению целевой функции, то вероятность сохранения этого изменения вычисляется с помощью распределения Больцмана:

где




Выбирается случайное число



Для завершения больцмановского обучения повторяют шаги 3 и 4 для каждого из весов сети, постепенно уменьшая температуру

Величина случайного изменения веса на шаге 3 может определяться различными способами. Например, подобно тепловой системе, весовое изменение


где



Так как требуется величина изменения веса


- Найти кумулятивную вероятность, соответствующую . Это есть интеграл отв пределах от 0 до. Поскольку в данном случаене может быть проинтегрирована аналитически, она должна интегрироваться численно, а результат необходимо затабулировать.
- Выбрать случайное число из равномерного распределения на интервале (0,1). Используя эту величину в качестве значения , найти в таблице соответствующее значение для величины изменения веса.
Свойства машины Больцмана широко изучены. Скорость уменьшения температуры должна быть обратно пропорциональна логарифму времени, чтобы была достигнута сходимость к глобальному минимуму. Скорость охлаждения в такой системе выражается следующим образом:

где



Этот разочаровывающий результат предсказывает очень медленную скорость охлаждения (и вычислений). Вывод подтвержден и экспериментально. Машины Больцмана часто требуют для обучения очень большого ресурса времени.