Основы теории нейронных сетей


Теоремы APT


Гроссберг доказал некоторые теоремы, которые описывают характеристики сетей APT. Четыре результата, приведенные ниже, являются одними из наиболее важных:

  1. После стабилизации процесса обучения предъявление одного из обучающих векторов (или вектора с существенными характеристиками категории) будет активизировать требуемый нейрон слоя распознавания без поиска. Такая характеристика "прямого доступа" обеспечивает быстрый доступ к предварительно изученным образам.
  2. Процесс поиска является устойчивым. После определения выигравшего нейрона в сети не будет возбуждений других нейронов из-за изменения векторов выхода слоя сравнения
    ; только сигнал сброса может вызвать такие изменения.
  3. Процесс обучения является устойчивым. Обучение не будет вызывать переключения с одного возбужденного нейрона слоя распознавания на другой.
  4. Процесс обучения конечен. Любая последовательность произвольных входных векторов будет производить стабильный набор весов после конечного количества обучающих серий. Повторяющиеся последовательности обучающих векторов не будут приводить к циклическому изменению весов.



Содержание раздела